シームレスな情報環境を実現するロボットメディアの設計と実装

江谷典子，江谷為之*，間瀬健二*

奈良先端科学技術大学院大学
情報科学研究科 知能情報処理学講座
e-mail:noriko-e@is.aist-nara.ac.jp

株式会社 ATR 知能映像通信研究所*
e-mail:{etani,mase}@mic.atr.co.jp*

Abstract
本稿では、自律走行ロボットを用いるガイドシステムの構成およびロボットエージェントのソフトウェアアーキテクチャについて記述する。システム全体は、研究室内実験室などの見学者に案内することを目的としたロボットナビゲーションシステムである。本研究では、見学会地天井に赤外線ロケーションシステムを配置することで、空間全体をセンシングシステムを分散させたロボットシステムを構成する。見学者の携帯端末上で展開される情報空間で動作するガイドエージェントは目的地情報をロボットエージェントに送信し、その情報によりロボットエージェントは物理空間である実験室を移動しながら案内する「ロボットメディア」を用いて役割を果たす。本研究では、マルチエージェントシステムとして、センシングシステム、携帯端末、ロボット実機間の情報連携を実現し協調適応システム構築を目指す。

Design and Implementation of Robot-Media to Realize Seamless Information Environment

Noriko Etani, Tameyuki Etani*, Kenji Mase*

Artificial Intelligence Laboratory
Graduate School of Information Science
Nara Institute of Science and Technology

ATR Media Integration & Communications Research Laboratories*

Abstract
This paper describes a guide system and a software architecture of an autonomous interactive robot. A robot navigation system is developed so that the robot can guide people to visit halls in various showcases. The hallway is implemented by Infra-Red location systems on the ceilings, thus the environment is a part of the sensor-distributed robot system. A guide agent inhabiting in the handheld mobile computer transits the information of destination to the robot agent. The robot agent plays a role of “ROBOT-MEDIA” to integrate information between the information space of the mobile computer and the phisical space of the exhibits, in order to guide visitors in phisical space. This research aims to develop one of cooperative adaptive systems as a two-way communication among space, media and human beings by introducing “INFORMATION VEHICLES” which consists of sensing systems, a mobile computer and a mobile robot built on a multi-agent system.

1 はじめに

人間と日常的に関わることができるように自律ロボットの実現を目指した人工知能研究が進められている[1]。本稿では、研究室内実験室などの見学者に案内を行うロボットガイドシステムの製作について紹介を行う。本研究の目的は、実験室の空間 - メディア - 人間間の情報連携による協調適応システムの具体例として、まず携帯端末が提案する情報を現実世界と人間が存在する物理世界を横ぐインタラクティブなロボットナビゲーションを実現することである。携帯端末などでは、ネットワークや表示機能を利用した情報空間とのインタラクションが行われる[6]。しかしながら、人間が現実環境において物理的かつ身体的感覚を利用して実空間を歩くように情報空間を利用することは携帯端末には限界がある。そこ
図 1: ロボットガイドシステムの構成

図 2: 見学者の携帯端末

で、実験室屋下天井には赤外線ロケーションシステムを配置し、空間全体にセンシングシステムを分散させたロボットシステムを構築して実験室のガイドと情報空間の連携を試みた。見学者を所持する携帯端末には、指示された情報からガイドエージェントが目的地情報をロボットエージェントに送信する。そのロボットエージェントは、実世界におけるパスプランニングを行い目的地へ見学者を案内する。すなわち、「実世界マルチエージェントシステム」である。以下では、本試みのマルチエージェントシステムのプラットフォームおよびロボットエージェントのソフトウェアーキテクチャについて述べる。

2 ロボットガイドシステムの構成

本システム（図 1）は、ATR知能映像通信研究所の実験室空間を使って実装した。システムは、赤外線ロケーションシステムおよびその管理サーバー、無線LANを利用してサーバと通信を行う携帯端末および自律走行ロボットを用いたロボットエージェントから構成される。携帯端末は、SONY VAIO PCG-C1を用いて、ネットワーク接続には1.2GHz帯域の無線WaveLANを利用し、これにより常に1Mbit/秒の通信が可能になる（図 2）。見学者を案内するロボットエージェント（図 3）は、

図 3: ロボットエージェントの外観（1）

図 4: ロボットエージェントの外観（2）

ActivMedia社製Pioneer1 mobile robotを用いる。本自律走行ロボット（図 4）は、7つの超音波センサー、エンコーダ、コンパス、2軸の無線モータから構成されており、これらを制御する専用OS（PSOS）が搭載されている。その植物端末として、GateWay社製solo（Red Hat Linux release 5.1）を使用して、ロボット実機のPSOS（Pioneer1 mobile robot 制御用OS）と外部端末上のクライアントシステム間をシリアル接続する。本クライアントシステムは、PSOS側から100msec毎に超音波センサー、エンコーダ、コンパスのデータ受信を行う。PSOSとの通信を行うSaphiraライブラリを利用したクライアントシステムは、ロボットエージェントとして、自律走行ロボットのセンシング情報の処理、モータ制御指示およびロケーションシステムからの位置情報取得を行う。ロボットエージェントおよび見学者の携帯端末の位置検出には赤外線ロケーションシステム（以下、ロケーションシステム）を用いる。携帯端末およびロボット実機上にパッケを付け、実験室の壁下および各実験室天井に設置された赤外線リーダース密に携帯端末およびロボット実機の位置検出を行い、ロケーションシステムのサーバで位置情報が更新される。携帯端末上の
ガイドエージェントは、各ユーザによるガイド情報をロボットエージェントに通知する。見学者の携帯端末（図2）およびロボットエージェント（図3）間をガイドエージェントが移動することにより、携帯端末の情報世界とロボットエージェントと見学者が移動する実験室内を動きながらも、その間の物理環境を知るようなシームレスなロボットメディアを構築する。

3 ロボットメディアの設計

Saphiraライブラリを利用したクライアントシステムとして構築したロボットエージェントのソフトウェアアーキテクチャとその各階層間の通信プロトコルについて記述する。

3.1 ソフトウェアアーキテクチャ

ロボットエージェントは、環境入力およびガイドエージェントからの目的地情報（ドア番号）、ロケーションシステムから通知されたサイト番号およびロボット実機のコンパス情報から獲得した現在の位置および角情報により、パスプランニングを行う目的地まで走行する。このエージェントの外部端末上で動作するクライアントシステムは、コミュニケーション層、Behavior層、Action層の3つの階層から構成されるソフトウェアアーキテクチャ（図5）である。各階層の役割は次の通りである。

(1) Communication層
 アイドル、移動、案内、到着の4つの内部状態を管理し、この内状態に応じたグラフィックキャラクタ表示および音声ガイダンス出力を行う。

(2) Behavior層
 環境入力（ロケーションシステムのサイト番号、7つの超音波センサー、コンパス値、エンコーダ値）、内部状態、目的地のドア番号の管理を行い、ロボットの行動生成のためのパスプランニングを行う。

(3) Action層
 ロボット制御用オペレーティングシステム（PSOS）とアクションシステムからの環境入力処理およびのモータによる車輪駆動制御。

3.2 行動決定通信プロトコル

前述のアーキテクチャを用いて、ロボットの行動を決定するための各コンポーネント間の調整通信プロトコル（図6）は次の通りである。

(1) 超音波センサーにより100msec毎に障害物検出と回避を行う。

(2) ロケーションシステムからサイト番号は、Communication層を通じてBehavior層へ通知される。

3.3 行動生成通信プロトコル

Communication層では、「アイドル（Idle）」「移動（Transmission）」「案内（Guiding）」「到着（Goal）」
「アイドル (Idle)」の状態遷移モデル (図 7) は、内状態で管理される。「アイドル (Idle)」とは、ロボットエージェントが直線運を含むし、各実験室のドア前で停止し、音声ガイダンスを行う。「移動 (Goal)」とは、ロボットエージェントがアイドル状態時に見学者に出会う、見学者の所持する携帯電話上のガイドエージェントが、ロボットエージェントへ Transmission Command を送信する。すなわち、「移動」への切り替えは、アイドル状態の時に生じ、「携帯電話を所持した見学者がない」か、あるいは「携帯電話のガイドエージェントが移動する必要がない」場合、アイドル状態を維持する。「案内 (Guide)」とは、ロボットエージェントが移動状態時、見学者が目的地指示を出すと、見学者の所持する携帯電話上のガイドエージェントがロボットエージェントへ Destination Command を送信し（エージェントのマグレーション）、見学者を目的地へ案内する。「到着」とは、ロボットエージェントが見学者の指示した目的地に到着し、見学者の所持する携帯電話上のガイドエージェントへ Transmission End Command を送信する。この内状態遷移に従って、Behavior 層ではパスプランニングを実行し、前進あるいは回転などの行動生成を行い、Action 層へモータ制御指示を行う。Communication 層におけるロボットの内状態を識別するトリガーとなる通信プロトコルを図 11 に示す。

1. ロボットエージェントの内状態変更時、Behavior 層から Communication 層へ通知される。
2. ロボットエージェントは「アイドル」状態 (Behavior 層)。
3. ガイドエージェントから「移動」コマンドが、Communication 層を通じて Behavior 層へ通知される。
4. ロボットエージェントは「移動」状態 (Behavior 層)。60秒以内に (5) へ移動しない場合は、「アイドル」へ復帰する。
5. ガイドエージェントから案内情報が、Communication 層を通じて Behavior 層へ通知される。
6. ロボットエージェントは「案内」状態 (Behavior 層)。
7. パスプランニングを行い、目的地への向かう。
8. 目的地に到着すると、ロボットエージェントから「到着」コマンドが、Communication 層を通じて Behavior 層から通知される。
9. ガイドエージェントから「移動終了」コマンドが、Communication 層を通じて Behavior 層へ通知される。60秒以内に「移動終了」コマンドを受け取らない場合、強制的に (2) へ戻る。
3.4 赤外線ロケーションシステムを用いたパスプランニング

図 12と図 13には、ロケーションシステムを用いたロボットエージェントの走行方向による移動空間分割を示す。ロボットエージェントは、サイト番号2を始点、サイト番号7を終点として、サイト番号2から7の間を往復する。案内状態時、Behavior 層にて目的地を位置までのパスプランニングにより走行距離を求め、Action 層にて走行指示を行う。本パスプランニングでは、赤外線ロケーションシステムを用いてサイト番号の切り替わる地点間を一歩のパスとして、その区間距離（単位：mm）を累積して走行距離を求める方法を用いた走行距離を求める方法と目的地サイト番号およびサイト番号切り替え地点から目的地への距離を走行する方法を試みた。

3.4.1 サイト区間距離を累積する場合

目的地を含まない最終サイト番号までは距離を累積計算し、目的地のサイト番号に入ったら、その地点から目的地への距離を走行する。具体的には、以下の修正手順である。

(1) 走行方法の調整
目的方向が現在の走行方向と異なる場合に180度回転する。
(2) 目的地への走行距離計算

\[\text{GoalDistance} = a \cdot w + \sum_{i = \text{NextSite}} b \cdot w + c \]

\(w \): 走行方向

例え、図 14で、目的地Xのロボットエージェントは、右（東）方向を向いており180度回転し、走行方向をWESTとして、現在のサイト番号における残りの走行距離およびサイト番号3と4の実測値の累積値さらにサイド番号2と3の切り替え地点からdoor1までの距離cの合計値を走行距離とする。PSOS にこの距離と方向を指示すれば、ロボットエージェントは目的地まで自動的に到着できる。しかしながら、本試行における処理では、案内中の障害物回避などによりエンコーダ値の誤差が増加するため正しくドア停止が行えない場合がある。そこで、エンコーダ値に基づく走行距離を可能な限り短くし誤差を少なくするために次の方法を提案する。
図15：目的地 door3 の場合

3.4.2 サイト番号およびサイト番号切り替え地点からの距離の場合

目的地を含む最終サイト番号までは距離によらず走行し、目的地のサイト番号に入ったら、その地点から目的地への距離を走行する。具体的には、以下の処理手順である。

(1) 走行方向の調整
目的方向が現在の走行方向と異なる場合 180 度回転する。

(2) 目的地への走行距離計算
When GoalSite is detected,

\[\text{GoalDistance} \leftarrow c \]

\(c \): 最終サイト番号切り替え地点から目的地への距離（単位：mm）
GoalSite: 目的地のサイト番号

(3) ロケーションシステムを用いた走行方向補正
サイト番号更新時、スリップなどによるエンコーダ値の誤差を縮小するために、東西走行方向の誤差をコンバス値およびロボット実機のセンサ（走行方向に対する傾き）より補正を行う。

例えば、図15で、現地点 Y のロボットエージェントの目的地が door3 の場合、走行方向を EAST として、エンコーダ値とは無関係にサイト番号 3 に切り替わるまで走行する。サイト番号 3 に入ったら、サイト番号 4 に入るとまで走行させ、サイト番号 4 に入れた地点からの目的地への距離 c を走行する。

4 まとめ

今回の試みは、マルチエージェントシステム上に、自律走行ロボットを用いたロボットエージェントが、ロケーションシステム、超音波センサーおよびコンパスからの環境入力により自律的に行動生成できるようなプラットフォームを構築した。本環境においては、超音波センサーセンシング距離 2.5m、走行速度 20cm/sec、障害物回避およびモータストレス解消を行い、サイト間距離を繰り返す方法を用いて走行させた。見学者の多くはロボットを避けて通るだけだが、混雑度合によりエンコーダ値の誤差の変動が大きいためドア前領域で停止することが困難であった。サイト番号およびサイト番号切り替え地点からの距離にて走行する方法では、ドア前停止領域の誤差を縮小させることができた。今後、人間も環境入力の一部として捉えた処理機構を検討し、見学者の混雑度に応じた速度制御やドア前停止位置の調整を行うなど変化ののもと状態空間に適した行動生成を行うように進化論的計算手法などを用いたマルチエージェントシステムの構築を目指す[5]。

謝辞
本研究のために議論を行って頂いた株式会社 ATR 知能映像通信研究所の研究員の方々に感謝致します。携帯端末およびロボットエージェントのキャラクタデザインを提供して頂いた第一研究室 横沢順氏に感謝致します。

参考文献

